As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The 15-puzzle is a well-known game which has a long history stretching back in the 1870's. The goal of the game is to arrange a shuffled set of 15 numbered tiles in ascending order, by sliding tiles into the one vacant space on a 4×4 grid. In this paper, we study how Reinforcement Learning can be employed to solve the 15-puzzle problem. Mathematically, this problem can be described as a Markov Decision Process with the states being puzzle configurations. This leads to a large state space with approximately 1013 elements. In order to deal with this large state space, we present a local variation of the Value-Iteration approach appropriate to solve the15-puzzle starting from arbitrary configurations. Furthermore, we provide a theoretical analysis of the proposed strategy for solving the 15-puzzle problem. The feasibility of the approach and the plausibility of the analysis are additionally shown by simulation results.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.