As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which typically results in many CPU-intensive jobs and thus computing environments such as Clouds must be used. Job scheduling is however challenging due to its inherent NP-completeness. Therefore, some Cloud schedulers based on Swarm Intelligence (SI) techniques, which are good at approximating combinatorial problems, have arisen. We describe a Cloud scheduler based on Ant Colony Optimization (ACO), a popular SI technique, to allocate Virtual Machines to physical resources belonging to a Cloud. Simulated experiments performed with real PSE job data and alternative classical Cloud schedulers show that our scheduler allows a fair assignment of VMs, which are requested by different users, while maximizing the number of jobs executed every time a new user connects to the Cloud. Unlike previous experiments with our algorithm [9], in which batch execution scenarios for jobs were used, the contribution of this paper is to experiment with our proposal in dynamic scheduling scenarios. Results suggest that our scheduler provides a better balance to the number of executed jobs per unit time versus serviced users, i.e., the number of Cloud users that the scheduler is able to successfully serve.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.