As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Gait Recognition is a biometric application that aims to identify a person by analyzing his/her gait. Common methods for gait recognition rely on supervised machine learning techniques and step detection methods. However, the latter has been showed to provide poor performances in ambulatory conditions [4]. In this paper, a Granular Computing approach that does not require to detect steps is applied to the accelerometers signals obtained from gait. This approach involves information granules, based on density measures and collected from a reconstructed attractor, that can be obtained at different granularity levels and hence gather information at different scales. The performance of the method is evaluated on the task of recognizing 12 people by his/her gait.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.