As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Detecting hands in multi-modal RGB-Depth visual data has become a challenging Computer Vision problem with several applications of interest. This task involves dealing with changes in illumination, view point variations, the articulated nature of the human body, the high flexibility of the wrist articulation, and the deformability of the hand itself. In this work, we propose an accurate and efficient automatic hand detection scheme to be applied in Human-Computer Interaction (HCI) applications in which the user is seated at the desk and, thus, only the upper body is visible. Our main hypothesis is that hand landmarks remain at a nearly constant geodesic distance from an automatically located anatomical reference point. In a given frame, the human body is segmented first in the depth image. Then, a graph representation of the body is built in which the geodesic paths are computed from the reference point. The dense optical flow vectors on the corresponding RGB image are used to reduce ambiguities of the geodesic paths' connectivity, allowing to eliminate false edges interconnecting different body parts. Finally, we are able to detect the position of both hands based on invariant geodesic distances and optical flow within the body region, without involving costly learning procedures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.