As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We present a new approach lo learn from relational data based on re-representation of the examples. This approach, called property-based re-representation is based on a new analysis of the structure of refinement graphs used in ILP and relational learning in general. This analysis allows the characterization of relational examples by a set of multi-relational patterns called properties. Using them, we perform a property-based re-representation of relational examples that facilitates the development of relational learning techniques.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.