As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The typical radiology reporting workflow involves the radiologist first looking at one or more relevant prior studies before interpreting the current study. To improve workflow efficiency, PACS systems can display relevant prior imaging studies, typically based on a study's anatomy as indicated in the Body Part Examined field of the DICOM header. The content of the Body Part Examined field can be very generic. For instance, an imaging study to exclude pancreatitis and another one to exclude renal stones will both have “abdomen” in their body part field, making it difficult to differentiate them. To improve prior study matching and support better study filtering, in this paper, we present a rule-based approach to determine specific body parts contained in the free-text DICOM Study Description field. Algorithms were trained using a production dataset of 1200 randomly selected unique study descriptions and validated against a test dataset of 404 study descriptions. Our validation resulted in 99.94% accuracy. The proposed technique suggests that a rule-based approach can be used for domain specific body part extraction from DICOM headers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.