As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we propose a novel idea for applying probabilistic graphical models for automatic text summarization task related to a legal domain. Identification of rhetorical roles present in the sentences of a legal document is the important text mining process involved in this task. A Conditional Random Field (CRF) is applied to segment a given legal document into seven labeled components and each label represents the appropriate rhetorical roles. Feature sets with varying characteristics are employed in order to provide significant improvements in CRFs performance. Our system is then enriched by the application of a term distribution model with structured domain knowledge to extract key sentences related to rhetorical categories. The final structured summary has been observed to be closest to 80% accuracy level to the ideal summary generated by experts in the area.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.