As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
As the amount of data acquired from humans is constantly increasing, efficient tools are needed for extracting relevant information from this data. This paper presents a Matlab implementation of a method to classify and visually explore (highly) multi-variate patient data. The method uses the so-called Disease State Index (DSI) which measures the fit of a test subject's data to two classes present in the data (e.g. ‘controls’ and ‘positives’). DSI values of the different variables measured from a patient can be combined and visualized in a tree-like form using the Disease State Fingerprint (DSF) method. This allows a researcher to explore and understand the relevance of the different variables in classification problems. Moreover, the method is robust with respect to missing data. After giving an introduction to the DSF and DSI methods, the paper describes the steps required to use the methods and presents a MATLAB toolbox to perform these steps. To demonstrate the methods' versatility, the paper illustrates the usage of the toolbox in a few different contexts in which personal health data is to be classified. With this implementation, a powerful and flexible tool is made available to the biomedical research community.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.