As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Credal networks generalize Bayesian networks relaxing numerical parameters. This considerably expands expressivity, but makes belief updating a hard task even on polytrees. Nevertheless, if all the variables are binary, polytree-shaped credal networks can be efficiently updated by the 2U algorithm. In this paper we present a binarization algorithm, that makes it possible to approximate an updating problem in a credal net by a corresponding problem in a credal net over binary variables. The procedure leads to outer bounds for the original problem. The binarized nets are in general multiply connected, but can be updated by the loopy variant of 2U. The quality of the overall approximation is investigated by promising numerical experiments.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.