As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed serine/threonine kinase that plays a key role in the pathogenesis of Alzheimer's disease (AD). GSK3 phosphorylates tau in most serine and threonine residues hyperphosphorylated in paired helical filaments, and GSK3 activity contributes both to amyloid-β production and amyloid-β-mediated neuronal death. Thus, mice generated in our laboratory with conditional overexpression of GSK3 in forebrain neurons (Tet/GSK3β mice) recapitulate aspects of AD neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis, as well as spatial learning deficit. In this review, we describe recent contributions of our group showing that transgene shutdown in that animal model leads to normal GSK3 activity, normal phospho-tau levels, diminished neuronal death, and suppression of the cognitive deficit, thus further supporting the potential of GSK3 inhibitors for AD therapeutics. In addition, we have combined transgenic mice overexpressing the enzyme GSK3β with transgenic mice expressing tau with a triple FTDP-17 mutation that develop prefibrillar tau-aggregates. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Further, it is possible to partially reverse tau pathology in advanced stages of the disease, although the presence of already assembled neurofibrillary tangle-like structures cannot be reversed.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.