As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The development of prevention therapies for Alzheimer's disease (AD) would greatly benefit from biomarkers that are sensitive to subtle brain changes occurring prior to the onset of clinical symptoms, when the potential for preservation of function is at the greatest. In vivo brain imaging is a promising tool for the early detection of AD through visualization of abnormalities in brain structure, function and histopathology. Currently, Positron Emission Tomography (PET) imaging with amyloid-beta (Aβ) tracers and 2-[18F]fluoro-2-Deoxy-D-glucose (FDG) is largely utilized in the early and differential diagnosis of AD. Aβ PET tracers bind to Aβ plaques in brain, and provide an in vivo estimate of AD pathology. FDG-PET is used to measure glucose metabolism, a marker of brain activity. This paper reviews brain Aβ- and FDG-PET studies in AD patients as well as in non-demented individuals at risk for AD. We then discuss the potential of combining symptoms-sensitive FDG-PET measures with pathology-specific Aβ-PET to improve the early detection of AD.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.