

Sporadic Alzheimer's disease has been proposed to start with an insulin-resistant brain state (IRBS). We investigated the effect of IRBS induced by intracerebroventricularly (icv) administered streptozotocin (STZ) on behavior, glycogen synthase kinase-3 (GSK)alpha/beta content, and the formation of AD-like morphological hallmarks Abeta-amyloid and tau protein in amyloid precursor protein (APP) tg2576 mice. Nine-month-old tg mice were investigated 6 months after a single icv injection of STZ or placebo. Spatial cognition was analyzed using the Morris water maze test. Soluble and aggregated Abeta40/42 fragments, total and phosphorylated tau protein, and GSK-3alpha/beta were determined by ELISA. Cerebral (immuno)histological analyses were performed. In tg mice, STZ treatment increased mortality, reduced spatial cognition, and increased cerebral aggregated Abeta fragments, total tau protein, and congophilic amyloid deposits. These changes were associated with decreased GSK-3alpha/beta ratio (phosphorylated/total). A linear negative correlation was detected between Abeta42 and cognition, and between GSK-3alpha/beta ratio and aggregated Abeta40+42. No marked necrotic and apoptotic changes were observed. In conclusion, IRBS may aggravate AD-like changes such as behavioral and increase the formation of pathomorphological AD hallmarks via GSK-3alpha/beta pathway in APP-overexpressing mice.