As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In many areas nutrient loadings to aquatic ecosystems have increased considerably as a result of population growth, industrial development and urbanization. This has resulted in enhanced growth of phytoplankton, shifts in composition of the plankton community, and changes in the structure of ecosystems, which are often considered to be objectionable. To help understanding these processes and to predict future conditions, a mathematical model, BLOOM, has been developed and applied since 1977. It simulates the biomass and composition of phytoplankton and macro algae in relation to the amount of nutrients, the under water light climate and grazing. It can be applied as a relatively simple screening tool, but also as part of advanced integrated modelling systems including additional hydrodynamic, suspended matter and habitat components. The model has been extensively validated, which means that its credibility was demonstrated systematically for certain types of applications. It has been applied as a supporting management tool to a very large number of aquatic systems worldwide: lakes, channel systems, estuaries, lagoons and coastal seas, using generic coefficients (one set for fresh water, one set for marine simulations) as much as possible. The principles of the model, its validation and a number of representative applications are described in this thesis.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.