As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This article describes the design and implementation of a prototype that analyzes and classifies transcripts of interviews collected during an experiment that involved lateral-brain damage patients. The patients' utterances are classified as instances of categorization, prediction and explanation (abduction) based on surface linguistic cues. The agreement between our automatic classifier and human annotators is measured. The agreement is statistically significant, thus showing that the classification can be performed in an automatic fashion.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.