As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A forward-secure encryption scheme protects secret keys from exposure by evolving the keys with time. Forward security has several unique requirements in hierarchical identity-based encryption (HIBE) scheme: (1) users join dynamically; (2) encryption is joining-time-oblivious; (3) users evolve secret keys autonomously.
We define and construct a scalable pairing-based forward-secure HIBE (fs-HIBE) scheme satisfying all of the above requirements. We also show how our fs-HIBE scheme can be used to realize a forward-secure public-key broadcast encryption scheme, which protects the secrecy of prior transmissions in the broadcast encryption setting. We further generalize fs-HIBE into a collusion-resistant multiple hierarchical ID-based encryption scheme, which can be used for secure communications with entities having multiple roles in role-based access control. The security of our schemes is based on the bilinear Diffie-Hellman assumption in the random oracle model.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.