As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The physics of laser-plasma interactions has undergone dramatic improvements in recent years. By directing a multi-TW, ultrashort laser pulse onto a thin foil or a gas jet, it is nowadays possible to produce multi-MeV proton, ion and electron beams. Although much progress has been made in characterizing and improving the quality of such laser-generated beams, it is still an untouched issue whether the laser-generated beams are or can be spin polarized and, thus, whether laser-based polarized sources are conceivable. To this end, one may either think of a spatial selection of certain spin states through the huge magnetic field gradients that are inherently generated in the laser-generated plasmas, or of pre-polarized target particles which maintain their polarization during the rapid acceleration process. We have developed a method to measure the degree of polarization of protons that have been accelerated at the 300 TW laser facility ARCturus at Dusseldorf University.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.