As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We derive a theory of polariton Bose-Einstein condensation based on the many-body quantum field theory of interacting Bose particles. In particular, we describe self-consistently the linear exciton-photon coupling and the exciton-non-linearities, by generalizing the Hartree-Fock-Popov description of BEC to the case of two coupled Bose fields at thermal equilibrium. In this way, we compute the density-dependent one-particle spectrum, the energy occupations and the phase diagram. The results quantitatively agree with the existing experimental findings. We discuss the conditions under which polaritons can be considered as a dilute Bose gas at thermal equilibrium. While the diluteness is enforced by the very peculiar energy-momentum dispersion, thermal equilibrium is only partially achieved in common experiments. A basic tool to model the kinetics of polariton BEC is then derived in terms of Boltzmann equations, including polariton-phonon and polariton-polariton scattering. We discuss under which conditions thermal equilibrium condensation can be reached and how to design future microcavity samples in order to reach this goal.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.