As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Coherent optical spectroscopy of semiconductor nanostructures is a well-established field with several decades of history. This contribution discusses the selected topics of imaging spectroscopy, speckle analysis, and four-wave mixing. Imaging spectroscopy is getting increasingly popular due to the availability of suited detectors, and for the intuition for the, physics behind the data provoked by a two- or three-dimensional view on the measured quantities. A general discussion on the optical imaging and detector requirements is presented, followed by examples concerning microcavity polaritons in spectral and time domain as well as in real space and reciprocal space. Speckle analysis is a linear optical technique conceived a decade ago capable of extracting microscopic properties such as dephasing from ensembles of localized optical excitations even in the presence of inhomogeneous broadening. Four-wave mixing is a well-known technique of coherent spectroscopy, which in the last decade has been improved by the introduction of heterodyne detection and spectral interferometry, enabling to investigate quantum wires and quantum dots, both in ensembles and also for individual localized transitions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.