As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
These lecture notes discuss two effects which contribute to the reduction of the interference fringe contrast in matter interferometers. The first effect is the shot noise arising from a finite number of atoms used in experiments. Focusing on a single-shot measurement, we provide explicit calculations of the full distribution functions of the fringe contrast for the interference of either the coherent or the number states of atoms. Another mechanism of the suppression of the amplitude of interference fringes discussed in these lecture notes is the quantum and thermal fluctuations of the order parameter in low-dimensional condensates. We summarize recent theoretical and experimental studies demonstrating that suppression of the interference fringe contrast and its shot to shot variations can be used to study correlation functions within individual condensates. We also discuss full distribution functions of the fringe amplitudes for one and two-dimensional condensates and review their connection to high-order correlation functions. We point out intriguing mathematical connections between the distribution functions of interference fringe amplitudes and several other problems in field theory, systems of correlated electrons, and statistical physics.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.