As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A well-known difficulty with solving Constraint Satisfaction Problems (CSPs) is that, while one formulation of a CSP may enable a solver to solve it quickly, a different formulation may take prohibitively long to solve. We demonstrate a system for automatically reformulating CSP solver models by combining the capabilities of machine learning and automated theorem proving with CSP systems. Our system is given a basic CSP formulation and outputs a set of reformulations, each of which includes additional constraints. The additional constraints are generated through a machine learning process and are proven to follow from the basic formulation by a theorem prover. Experimenting with benchmark problem classes from finite algebras, we show how the time invested in reformulation is often recovered many times over when searching for solutions to more difficult problems from the problem class.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.