As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Scientific numerical applications are always expecting more computing and storage capabilities to compute at finer grain and/or to integrate more phenomena in their computations. Even though, they are getting more complex to develop. However, the continual growth of computing and storage capabilities is achieved with an increase complexity of infrastructures. Thus, there is an important challenge to define programming abstractions able to deal with software and hardware complexity. An interesting approach is represented by software component models. This chapter first analyzes how high performance interactions are only partially supported by specialized component models. Then, it introduces HLCM, a component model that aims at efficiently supporting all kinds of static compositions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.