As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Scientists from many domains desire to address problems within the next decade that, by all estimates, require computer systems that can achieve sustained exaflop computing rates (i.e., 1×1018 floating point operations per second) with real-world applications. Simply scaling existing designs is insufficient: analysis of current technological trends suggests that only a few architectural components are on track to reach the performance levels needed for exascale computing. The network connecting computer system nodes presents a particularly difficult challenge because of the prevalence of a wide variety of communication patterns and collective communication operations in algorithms used in scientific applications and their tendency to be the most significant limit to application scalability. Researchers at Oak Ridge National Laboratory and elsewhere are actively working to overcome these network-related scalability barriers using advanced hardware and software design, alternative network topologies, and performance prediction using modeling and simulation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.