As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Field-programmable gate arrays represent an army of logical units which can be organized in a highly parallel or pipelined fashion to implement an algorithm in hardware. The flexibility of this new medium creates new challenges to find the right processing paradigm which takes into account the natural constraints of FPGAs: clock frequency, memory footprint and communication bandwidth. In this paper first the use of FPGAs as a multiprocessor on a chip or its use as a highly functional coprocessor are compared, and the programming tools for hardware/software codesign are discussed. Next a number of techniques are presented to maximize the parallelism and optimize the data locality in nested loops. This includes unimodular transformations, data locality improving loop transformations and use of smart buffers. Finally, the use of these techniques on a number of examples is demonstrated. The results in the paper and in the literature show that, with the proper programming tool set, FPGAs can speed up computation kernels significantly with respect to traditional processors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.