As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A new implementation of a force decomposition method for parallel molecular dynamics simulations is presented. It is based on a geometrical decomposition of the influence matrix where sections are dynamically reorganized during the simulation in order to maintain a good load balance. Furthermore space filling curves are used to sort particles in space, which makes memory access more efficient and furthermore reduces communication between processors due to better locality. Benchmark runs are presented which shows in improvement in scalability due to well balanced work on the processors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.