As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We develop an algorithmic theory of convex optimization over discrete sets. Using a combination of algebraic and geometric tools we are able to provide polynomial time algorithms for solving broad classes of convex combinatorial optimization problems and convex integer programming problems in variable dimension. We discuss some of the many applications of this theory including to quadratic programming, matroids, bin packing and cutting-stock problems, vector partitioning and clustering, multiway transportation problems, and privacy and confidential statistical data disclosure. Highlights of our work include a strongly polynomial time algorithm for convex and linear combinatorial optimization over any family presented by a membership oracle when the underlying polytope has few edge-directions; a new theory of so-termed n-fold integer programming, yielding polynomial time solution of important and natural classes of convex and linear integer programming problems in variable dimension; and a complete complexity classification of high dimensional transportation problems, with practical applications to fundamental problems in privacy and confidential statistical data disclosure.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.