As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Branch-and-Cut is the most commonly used algorithm for solving Integer and Mixed-Integer Linear Programs. In order to reduce the number of nodes that have to be enumerated before optimality of a solution can be proven, branching on general disjunctions (i.e., split disjunctions involving more than one variable, as opposed to branching on simple disjunctions defined on one variable only) was shown to be very effective on particular classes of instances, but not much work has been done to study general purpose methods of this kind. In this paper, we survey known results related to this line of research, and we study the relationship between branching and cutting from a split disjunction.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.