As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Let X and Y be compact Riemann surfaces and let φ : X ⇒ Y be a ramified covering of a finite degree n. Let [Pscr ]Y ⊂ Y be a finite set of points that includes all branch points of φ and let [Pscr ]X = φ−1([Pscr ]Y). Let X0 = X \ [Pscr ]X and Y0 = Y \ [Pscr ]Y. Pick a base point y ∊ Y0 and let x ∊ φ−1(y). Since the restriction of φ to X0 is a covering, it induces an embedding φ* of π1(X0, x) into π1(Y0, y) as a subgroup of index n. We describe an algorithm that, given canonical generators of π1(Y0, y), computes canonical generators of π1(X0, x). The monodromy group G of the covering φ is naturally isomorphic to the factor group of π1(Y0, y) over its largest normal subgroup contained in φ*(π1(X0, x)). In light of this our algorithm can be used to compute standard generators for subgroups of G. The algorithm is implemented in GAP, and it was used to determine the containment among the Hurwitz loci of Riemann surfaces of low genus.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.