As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A formal notion of a Typ T of a self-dual linear code over a finite left R-module V is introduced which allows to give explicit generators of a finite complex matrix group, the associated Clifford-Weil group C(T) ≤ GL|V| (C), such that the complete weight enumerators of self-dual isotropic codes of Type T span the ring of invariants of [Cscr ](T). This generalizes Gleason’s 1970 theorem to a very wide class of rings and also includes multiple weight enumerators (see Section 2.7), as these are the complete weight enumerators cwem (C) = cwe(Rm ⊗ C) of Rm × m -linear self-dual codes Rm ⊗ C ≤ (Vm)N of Type Tm with associated Clifford-Weil group [Cscr ]m(T) = [Cscr ](Tm). The finite Siegel Φ-operator mapping cwem(C) to cwem−1(C) hence defines a ring epimorphism Φm : Inv([Cscr ]m(T)) ⇒ Inv([Cscr ]m−1(T)) between invariant rings of complex matrix groups of different degrees. If R = V is a finite field, then the structure of [Cscr ]m(T) allows to define a commutative algebra of [Cscr ]m (T) double cosets, called a Hecke algebra in analogy to the one in the theory of lattices and modular forms. This algebra consists of self-adjoint linear operators on Inv([Cscr ]m (T)) commuting with Φm. The Hecke-eigenspaces yield explicit linear relations among the cwem of self-dual codes C ≤ VN.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.