As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We recall the two different notions of algebraic immunity of vectorial functions: the basic algebraic immunity and the graph algebraic immunity. We introduce a new one, the component algebraic immunity, which helps studying the two others. We study the tightness of the bounds on the two first notions and prove bounds between them three. We recall the known bounds on the r-th order nonlinearity of a vectorial function, given its basic algebraic immunity. We recall why the basic algebraic immunity is not a relevant parameter when the number of output bits of the vectorial function is not small enough and/or when the S-box is used in a block cipher. This leads us to showing bounds on the r-th order nonlinearity, given the graph algebraic immunity, that we deduce from similar bounds involving the component algebraic immunity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.