As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Among cryptographically significant characteristics of Boolean functions used in symmetric ciphers the algebraic immunity and the nonlinearities of high orders play the important role. Some bounds on the nonlinearities of high orders of Boolean functions via its algebraic immunity were obtained in recent papers. In this paper we improve these results and obtain new tight bounds. We prove new universal tight lower bound that reduces the problem of an estimation of high order nonlinearities to the problem of the finding of dimensions of some linear spaces of Boolean functions. As simple consequences we obtain all previously known bounds in this field. For polynomials with disjoint terms we reduce the finding of dimensions of linear spaces of Boolean functions mentioned above to a simple combinatorial analysis. Finally, we prove the tight lower bound on the nonlinearity of the second order via its algebraic immunity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.