As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Visual objects are composed of parts like a body, arms, legs and a head for a human or wheels, a hood, a trunk and a body for a car. This compositional structure significantly limits the representation complexity of objects and renders learning of structured object models tractable. Adopting this modeling strategy I describe a system, which both (i) automatically de-composes objects into a hierarchy of relevant compositions and which (ii) learns such a compositional representation for each category without supervision. Compositions are represented as probability distributions over their constituent parts and the relations between them. The global shape of objects is captured by a graphical model which combines all compositions. Experiments on large standard benchmark data sets underline the competitive recognition performance of this approach and they provide insights into the learned compositional structure of objects.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.