As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Tensile test experiments were in-situ monitored using Pulsed Eddy Current (PEC) NDE technique for metallic materials. Materials such as Manganese Stainless steel (Mn-SS), SS304, Copper and Aluminum were employed in this study. Experiments were carried out to characterize the changes in PEC response due to the effect of loading pattern either continuous or interrupted loading or due to the effect of loading rate. Plastic deformation induced in the material increases the PEC signal response for all materials studied. Mn-SS material provided the best PEC response due to its property of phase transformation from austenitic (paramagnetic) to martensitic (ferromagnetic) phase as the plastic deformation increases. The effect of loading rate does not appear to influence the PEC response of materials, when the data was analyzed as a percentage of fracture strain. The effect of prior cold work could be identified using the PEC technique by characterizing the slope of PEC signal response in the elastic region when the material was subjected to an interrupted loading/unloading pattern. Offline PEC Measurements were taken along the length of the failed and the plastically deformed specimens. It was observed that from the PEC measurements, the impending failure location could be ascertained. These results suggest that PEC technique could be used as a NDE technique for material characterization and failure location identification.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.