As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The determination of magnetic distortion fields caused by inclusions hidden in a conductive matrix using homogeneous current flow needs to be addressed in multiple tasks of electromagnetic non-destructive testing and materials science. This includes a series of testing problems such as the detection of tantalum inclusions hidden in niobium plates, metal inclusion in a nonmetallic base material or porosity in aluminum laser welds. Unfortunately, straightforward tools for an estimation of the defect response fields above the sample using pertinent detection concepts are still missing. In this study the Finite Element Method (FEM) was used for modeling spherically shaped defects and an analytical expression developed for the strength of the response field including the conductivity of the defect and matrix, the sensor-to-inclusion separation and the defect size. Finally, the results also can be useful for Eddy Current Testing problems, by taking the skin effect into consideration.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.