As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recent research results indicated that eddy current conductivity measurements might be exploited for nondestructive evaluation of subsurface residual stresses in surface-treated nickel-base superalloy components. This paper presents new results that indicate that in some popular nickel-base superalloys the relationship between the electric conductivity profile and the sought residual stress profile is more tenuous than previously thought. It is shown that in IN718 the relationship is very sensitive to the state of precipitation hardening and, if left uncorrected, could render the eddy current technique unsuitable for residual stress profiling in components of 36 HRC or harder, i.e., in most critical engine applications. The presented experimental results show that the observed dramatic change in the eddy current response of hardened IN718 to surface treatment is caused by very fine nanometer-scale features of the microstructure, such as γ' and γ" precipitates, rather than micrometer-scale features, such as changing grain size or carbide precipitates.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.