As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Depending on the neutron fluence and the special design of the pressure vessel of nuclear power plants (NPP) the microstructure of the steels change by neutron induced embrittlement. Embrittlement is on the basis of vacancies and Curich precipitates which in the size range of 1–3 nm contribute with coherent residual stresses of the 3rd kind to an increase in hardness and strength (yield strength and tensile strength) as well as with a reduction of the upper shelf value of Charpy energy and a shift in the brittle-to-ductile transition temperature to higher temperatures. Micromagnetic investigations sponsored by the German minister of economics were performed at full Charpy specimen and material of the last generation of German NPP in order to characterize the material degradation. The contribution reports to the results obtained by the application of the Micromagnetic-, Multiparameter-, Microstructure-, and stress-Analysis (3MA) and the magnetostrictive excitation of ultrasound using an EMAT. Both technologies document potential to be further developed to an in-service inspection technique.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.