As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Torque and e.m.f. of an induction motor can be derived from the air-gap flux density. The paper shows a new method for computing the flux density distribution of constant air-gap width machines, neglecting magnetic saturation, by making use of very efficient techniques widely used in the field of discrete signals processing: the Fast Fourier Transform (FFT) and the Discrete Circular Convolution. The mutual inductances between the phases of the machine are obtained with a single, very simple formula, in terms of the machine's windings distribution and the geometric dimensions, which is solved with the FFT. As the method can handle arbitrary winding conductor distributions, it is highly suitable to the analysis of the magnetic field and electromagnetic torque in machines with stator or rotor faults, such as inter-turn short circuits or broken bars.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.