As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
An essential step in the development of quantum Hall devices for ac metrological standards is the frequency characterisation of multiconductor resistances [1]. The needed resistance values would require the use of rather long wires; a proposed solution consists in folding the wire into multiconductor geometries. In this work we present an accurate modeling of a quadrifilar resistance in the range 0–10 kHz, using a transmission-line approach. Capacitances were obtained with a version of the Boundary Element Method optimised to treat very different length scales; inductances, eddy currents and skin effects are computed through analytical formulae paying special attention to the singularities occurring in the problem.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.