As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
As a comparatively non-destructive imaging technique into living specimens, fluorescence microscopy has a number of strong advantages over alternative imaging modalities (X-ray, MRI, CT-scan, arthro-scan, etc.). The limited analysis in thick tissue has given rise to the development of other techniques, multiphoton excitation microscopy in particular. A need for increased sensitivity and resolution has been driving the development of new sophisticated fluorescence techniques based on microscopies to study: the tissue microstructure in situ (CLSM, SHG) on deeper thick sections of tissue (Multiphoton), molecular diffusion (FRAP, FCS) with fluorescent protein variants and molecular interaction (spectral, FRET, FLIM). In this paper, we have considered developments based on near infrared (NIR) femtosecond excitation in the imaging of articular tissue and discussed the technical limitations and perspectives.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.