Abstract
Ultraviolet B radiations increase the activity of the pure hydrolase (alpha amylase, E.C.3.2.1.1.) and Merck peroxidase (E.C.1.11.1.7.), by means of free radicals generated from synthetic polymers walls of the experimental tubes. The activation is higher in UV-B than in UV-A. UV-B and UV-A increase the intensity determined on nude alga Tetraselmis suecica, on exponential phase of cultivated bacteria Escherichia coli O157, Acinetobacter calcoaceticus, and on total germs, after the short time of exposure in the thermo-stated conditions, the cell structure destruction by means of free radicals of activated hydrolases.
The nude alga Tetraselmis suecica is more resistant and store starch and lipids. It has the skill to convert the energy of radiations in the chemical energy of synthesis products. Creating a thick inhomogeneous sub-silique, under which a new silique appears, encysts some individuals of Tetraselmis suecica. Other cells increase their glucide (intra-plastids starch granules) and lipid reserves of provisions (oleosoma appear in the central part of the cell and affect the tillacoide lamellar structure; plasto-globules appear as well).
Cultivated bacteria on poor specific media have a small development in 300 – 800 nm. If the bacteria are cultivated on reach media, which absorb UV (Martin medium) they are developed by n3 rule, instead n2 in the first stage, after irradiations of bacteria culture bottle (transmittance 235 – 800 nm).