As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Our aim is to contribute to biomedical text extraction and mining research. In this paper we present exploratory research on the MeSH terms assigned to MEDLINE citations. We analyze MeSH based co-occurrences and identify the interesting ones, i.e., those that are likely to be semantically meaningful. For each selected co-occurring pair we derive a weighted vector representation that emphasizes the verb based functional aspects of the underlying semantics. Preliminary experiments exploring the potential value of these vectors gave us very good results. The larger goal of this project is to contribute to knowledge discovery research by mining the knowledge that is latent within the biomedical literature. It is also to provide a method capable of suggesting cross-disciplinary connections via the pairs derived from all of MEDLINE.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.