As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Medical record linkage is becoming increasingly important as clinical data is distributed across independent sources. To improve linkage accuracy we studied different name comparison methods that establish agreement or disagreement between corresponding names. In addition to exact raw name matching and exact phonetic name matching, we tested three approximate string comparators. The approximate comparators included the modified Jaro-Winkler method, the longest common substring, and the Levenshtein edit distance. We also calculated the combined root-mean square of all three. We tested each name comparison method using a deterministic record linkage algorithm. Results were consistent across both hospitals. At a threshold comparator score of 0.8, the Jaro-Winkler comparator achieved the highest linkage sensitivities of 97.4% and 97.7%. The combined root-mean square method achieved sensitivities higher than the Levenshtein edit distance or longest common substring while sustaining high linkage specificity. Approximate string comparators increase deterministic linkage sensitivity by up to 10% compared to exact match comparisons and represent an accurate method of linking to vital statistics data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.