As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper describes a feature selection method based on the quadratic mutual information. We describe the needed formulation to estimate the mutual information from the data. This paper is motivated for the high time cost of the training process using the classical boosting algorithms. This method allows to reuse part of the training time used in the first training process to speed up posterior training to update the detectors in front of samples changes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.