As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We propose an hybrid and probabilistic classification of image regions belonging to scenes primarily containing natural objects, e.g. sky, trees, etc. as a first step in solving the problem of scene context generation. Therefore, we will focus our work in the problem of image regions labeling to classify every pixel of a given image into one of several predefined classes. Our proposal begins with a top-down control to find the core of objects, which allow us to update the learned models. Moreover, they become the starting seeds for the growing of a set of concurrent active regions which, considering the own region model as well as region and boundary information, obtain an accurate recognition of known regions. Next, a general segmentation extracts the unknown regions by a bottom-up strategy. Finally, a last stage exploits the contextual information to classify initially unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Experimental results on a wide set of outdoor scene images are shown to evaluate and compare our proposal.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.