As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.