

In view of an increasing use of breast MRI supplementing X-ray mammography, the purpose of this study was the development of a method for fast and efficient analysis of dynamic MR image series of the female breast. The image data sets were acquired with a saturation-recovery-turbo-FLASH sequence facilitating the detection of the kinetics of the contrast agent concentration in the whole breast with. In addition, a morphological 3D-FLASH data set was acquired. The dynamic image data sets were analyzed by tracer kinetic modeling in order to describe the physiological processes underlying the contrast enhancement in mathe-matical terms and thus to enable the estimation of functional tissue specific parameters, reflecting the status of microcirculation. To display morphological and functional tissue information simultaneously, a multidimensional real-time visualization system (using 3D-texture mapping) was developed, which enables a practical and intuitive human-computer interface in virtual reality. The spatially differentiated representation of the computed functional tissue parameters superimposed on the anatomical information offers several possibilities: improved discernibility of contrast enhancement; inspection of the data volume in 3D-space using the features of rotation and transparency variation; localization of lesions in space and thus fast and more natural recognition of topological coherencies. In a feasibility study, it could be demonstrated that multidimensional visualization of contrast enhancement in virtual reality is a practicable idea. Especially, detection and localization of multiple breast lesions may be an important application.