As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The aim of this study was to determine whether the amount of growth response to mechanical compression and the underlying mechanism differed with night-time or day-time loading, relative to full time loading. Mechanical compression (nominally 0.1 MPa stress) was applied across tibial and tail vertebral growth plates of growing Sprague-Dawley rats. Four groups of animals were tested: 24/24 hour (full-time loading); 12/24 hour (day-loading); 12/24 hour (night-loading); and 0/24 hour (sham instrumented), 4 or 5 animals . per group. After 8 days animals were euthanized and the growth plates were processed for quantitative histology of loaded and within-animal control growth plates to measure 24-hour growth, total and BrdU-positive proliferative zone chondrocyte counts, and hypertrophic chondrocyte enlargement in the growth direction. Results: Growth as a percentage of within-animal control averaged 82% (full-time); 93% (day-loading); 90% (night-loading); 100% (sham) for vertebrae. For proximal tibiae it averaged 70% (full-time); 84% (day-loading); 86% (night-loading); 89% (sham). Reduced amount of hypertrophic chondrocytic enlargement explained about half of this effect in full-time compressed growth plates, but was not significantly altered in half-time loaded growth plates. The remaining variation in growth was apparently explained by reduced total numbers of proliferative zone chondrocytes. The BrdU labeling index demonstrated an opposite trend, which was not statistically significant. In half-time loaded growth plates the proliferative zone cell count change predominated.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.