As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The shape of a curved line that passes through thoracic and lumbar vertebrae is often used to study spinal deformity with -measurements in "auxiliary" planes that are not truly three-dimensional (3D). Here we propose a new index, the geometric torsion, which could uniquely describe the spinal deformity. In this study we assessed whether geometric torsion could be effectively used, to predict spinal deformity with the aid of multiple linear regression. Anatomical landmarks were obtained from multi-view radiographic reconstruction and used to generate 3D model of the spine and rib cage of 28 patients. Fourier series best fitted to the vertebral centroids approximated the spinal shape. For each patient, spinal deformity indices were computed. Torsion was calculated and 20 derived parameters were recorded. Torsion inputs were used in a multiple linear regression model for prediction of key spinal indices. The primary clinical Cobb angle (mainly thoracic) was predicted well, with r=0.89 using all 20 inputs of torsion or r=0.83 using just two. Torsion was also well related to the Orientation of plane of maximal deformity (r=0.87). Torsion was less accurate but still significant in predicting maximal vertebral axial rotation (r=0.77). This preliminary study showed promising results for the use of geometric torsion as an alternative 3D index of spinal deformity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.