As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The use of neuronavigation (NN) in neurosurgery has become ubiquitous. A growing number of neurosurgeons are utilizing NN for a wide variety of purposes, including optimizing the surgical approach (macrosurgery) and locating small areas of interest (microsurgery). The goal of our team is to apply rapid advances in hardware and software technology to the field of NN, challenging and ultimately updating current NN assumptions. To identify possible areas in which new technology may improve the surgical applications of NN, we have assessed the accuracy of neuronavigational measurements in the Radionics™ and BrainLab™ systems. Using a phantom skull, we measured how accurate the visualization of a navigational probe's tip was in these systems, taking a total of 2180 measurements. We found that, despite current NN tenets, error is maximal at the six marker count and minimal in the spreaded marker setting; that is, placing less markers around the area of interest maximizes accuracy and active tracking does not necessarily increase accuracy. Comparing the two systems, we also found that accuracy of NN machines differs both overall and in different axes. As researchers continue to apply technological advances to the NN field, an increasing number of currently held tenets will be revised, making NN an even more useful tool in neurosurgery.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.