As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, XBONE, a hybrid medical expert system that supports diagnosis of bone diseases is presented. Diagnosis is based on various patient data and is performed in two stages. In the early stage, diagnosis is based on demographic and clinical data of the patient, whereas in the late stage it is mainly based on nuclear medicine image data. Knowledge is represented via an integrated formalism that combines production rules and the Adaline artificial neural unit. Each condition of a rule is assigned a number, called its significance factor, representing its significance in drawing the conclusion of the rule. This results in better representation, reduction of the knowledge base size and gives the system learning capabilities.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.