As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Bayesian approach to decision making is successfully applied in control theory for design of control strategy. However, it is based on on the assumption that a decision-maker is the only active part of the system. Relaxation of this assumption would allow us to build a framework for design of control strategy in multi-agent systems. In Bayesian framework, all information is represented by probability density functions. Therefore, communication and negotiation of Bayesian agents also needs to be facilitated by probabilities. Recent advances in Bayesian theory make formalization these tasks possible. In this paper, we bring the existing theoretic results together and show their relevance for multi-agent systems. The proposed approach is illustrated on the problem of feedback control of an urban traffic network.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.